

BE Internet Video RIPE 58

Greg Shepherd shep@cisco.com

Presentation ID © 2006 Cisco Systems, Inc. All rights reserved. Cisco Confidential

IPTV Today

- Current Multicast IPTV isolated in Walled Gardens
 - Edge provider "owns" the customer
 - Most content is region-specific (isolated)
 - Content/cost/ownership/distribution relationships control competition
- Will this last?

- Access bandwidth is driven by competition
- Access bandwidth rapidly surpassing video bandwidth
- Video bandwidth is semi-bounded

- IPTV works as a Value Added service today
- Access bandwidth growth opens up new applications
- Over-the-top video is already here in some form..
 Move, Joost, MacTV, YouTube, BitTorrent, AMT
 AMT the only network-based solution
- More available bandwidth will only improve these applications
- DVRs are changing how people watch TV
- Consumers don't care how their DVRs are populated
- Will live-TV be relevant in the future? Always!

- What's the end-game?
 Ubiquitous global video network
 Mostly VOD/DVR-queued
 What about live?
- Very little global multicast peering
- Multicast is a proven solution for one-to-many video distribution (walled-gardens)
- All global live content is forced to use unicast

What's Wrong?

- Multicast in the Internet is an all-or-nothing solution
 Each receiver must be on an IP Multicast enabled path.

 Many core networks have IP Multicast enabled but few edge networks do.
- Even Mcast-aware content owners are forced to provide unicast streams to gain audience size
- Unicast will never scale for streaming content
 Splitters/Caches just distribute the problem
 Still has a cost-per-user
- But is there a future for streaming?

Automatic IP Multicast without explicit Tunnels

http://www.ietf.org/internet-drafts/draft-ietf-mboned-auto-multicast-0x.txt last call in the MBONFD WG

 Allow multicast content distribution to extend to unicast-only connected receivers.

Bring the flat scaling properties of multicast to the Internet

- Provide the benefits of multicast wherever multicast is deployed.
 Let the networks which have deployed multicast benefit from their deployment.
- Work seamlessly with existing applications
 No OS kernel changes

Current AMT status

- Cisco development in NX-OS
- Public reference implementation

Android Gateway in development

Cisco Research grant to UCSB/UTDallas

Relay/Gateway - Linux/FreeBSD

Gateway - VLC (Mac, Win), Linksy

AMT Deployment Trial

- Provider Testing
- LINX GlobalMix IPTV content
- ISC.org Global meast mix network
- NETNOD MIX in Sweden Radio and IPTV content customers
- Open for more participants!! shep@cisco.com

UDP Internet Video?

- No control once the content leaves your administrative domain
- Is the "quality" of the Internet ready for global video distribution?

Measuring and Understanding IPTV Networks

Colin Perkins

http://csperkins.org/

Martin Ellis

http://www.dcs.gla.ac.uk/~ellis/

Research Goals

- Measure and understand the impairments affecting IPTV network traffic
 - Packet loss/timing; media aware if possible
 - Intra- and inter-domain flows
- Improve techniques for on-line error repair and off-line network troubleshooting
 - Inform choice of FEC, retransmission, etc.
 - Consider network tomography for management

IPTV System Model – Interdomain

Understanding System Performance

- Only limited IPTV measurements available
 - Most studies either between well-connected sites or using TCP for media transport
 - Little data on UDP-based IPTV performance
 - Interdomain from well-connected servers to residential hosts, to understand end-to-end path
 - Intradomain to understand behaviour of edge networks, evaluate effectiveness of network tomography to diagnose edge problems
 - Beginning to collect data early interdomain results today...

Interdomain Measurement Architecture

- Server well-connected on public Internet
- Clients on residential connections
- Inter-domain path from server to client
 - ~15 hops to UK ISPs;
 choke-point at
 Telehouse in London
 - Simulates interdomain
 IPTV scenario

Measurement Platform

- Deploy into home networks
 - ADSL generally 8Mbps downstream
 - Cable modem
- Expect a mix of users
 - Technical own Linux/Unix system at home, can run measurement tool
 - But uncontrolled measurement environment; undesirable variation
 - Non-technical require unobtrusive, low-maintenance, measurement box
 - Soekris net5501 single-board computer with 120GB disk, running FreeBSD 7
 - <10W, silent, size of a book

Measurement Using Test Streams

- Aim: generate test traffic to (roughly) match IPTV flows
 - Measure loss/jitter characteristics
 - Looking to move to real-world streaming IPTV over time

 Input to simulation of repair mechanisms and topology inference

Initial Measurements

ADSL								
IPTV CBR 1Mbps		1min						
IPTV CBR 2Mbps	03:15	10:15	15:15	20:15	10 mins			
IPTV CBR 4Mbps	03:35	10:35	15:35	20:35	10 mins			
VoIP CBR 64kbps		1 min						

Initial trace duration: 1-7 November 2008

Cable Modem								
IPTV CBR 1Mbps		1 min						
IPTV CBR 2Mbps	04:15	11:15	16:15	21:15	10 mins			
IPTV CBR 4Mbps	(not si	10 mins						
VoIP CBR 64kbps		1 min						

~16 million packets

Packet Loss – Loss Rates

Packet Loss – Loss Run Lengths

Packet Loss – Good Run Lengths

Packet Reordering

- Packet reordering infrequent
 - 4 packets reordered out of ~16 million sent
 - Worst was out-of-sequence (delayed) by 4 packets
 - 2 flows affected

 Matches expectations: reordering due to route change or misbehaving load balancing at high rates

ADSL Inter-arrival Times

- Traffic dispersion pattern not unexpected
- Highly dependent on time-of-day

ADSL Inter-arrival Times (24 Hour

ADSL Inter-arrival Times (1 Week

Cable Inter-arrival Times

 Slightly worse dispersion than ADSL at busy times, much better at quiet times

Cable Inter-arrival Times (24 Hour

Cable Inter-arrival Times (1 Week

MTBArtifacts

Summary of Measurements

- Despite uncontrolled inter-domain path, see clear distinctions between edge networks
 - Analysis just starting...
- Very early results: planning to conduct more measurements
 - Range of different ISPs
 - Multiple users in the same ISP

Implications for Error Concealment

- If these results are typical...
 - Most loss bursts short (2-3 packets), but many short good runs → small amounts of FEC, but not on adjacent packets
 - Longer bursts infrequent → not worth overhead of FEC to protect against these; reactive repair
 - Need more data, from flows reflecting real IPTV traffic, to confirm repair effectiveness

University of Glasgow

BE Video

- Most loss is random
- Few large correlated losses seen in the limited testing
- But we know network failures can create larger correlated loss

Need to see MTBF of the previous data

- Lightweight FEC can correct small correlated losses
- How do we correct for large correlated losses
 Even though these may have larger MTBF

MDC – Multi-Description Coding

- Most techniques and solutions are focused on path diversity
- All seem targeted for better error concealment
- Do not exploit temporal domain
- But what if you don't have visibility or control over the path? ...and all other network details?
- What if Best-Effort transport is all you can expect for all of your video content?

SVC - Scalable Video Coding

- H.264/AVC Annex G
- Allows the construction of bitstreams which contain sub-bitstreams that conform to H.264/AVC
- Aggregate bitstream contains a base-layer for minimum temporal and spatial resolution
- Sub-bitstreams are enhancement layers to add temporal or spatial resolution
- All enhancement sub-bitstreams are dependent upon the base-layer

Multi-Latticed Video Encoding

All layers of equal importance

No base-layer dependency Each layer independently decodable

- Transforms an unrecoverable "short" duration error into a long duration concealable error
- Can conceivably conceal multi-second network outages
- Practical concealment of 500ms outages without altering viewer experience.

Either startup latency or disruptive artifacts

 Other benefits are being discovered and explored through research implementations

The Internet is Dead

- Much work has been accomplished in the IETF for robust realtime streaming transport protocols
- Most end-sites now sit behind draconian firewalls
 Many are configured to address operational requirements
 "UDP is bad. HTTP is good!"
- Streaming solutions beginning to adopt HTTP to address this limitation
- Welcome to the Port80 network

- What's the end-game?
- How does an IPTV provider say in the food-chain?
- How do content owners maintain brand-identity?
- Who will be the next wave of content providers?
- Will Tier1 providers have a play?
- Will AMT enable a new generation of IP content?
- Will firewalls force all internet video onto HTTP?? ⊗

Thank you!

shep@cisco.com www.cisco.com

esentation ID © 2006 Cisco Systems, Inc. All rights reserved. Cisco Confidential 4