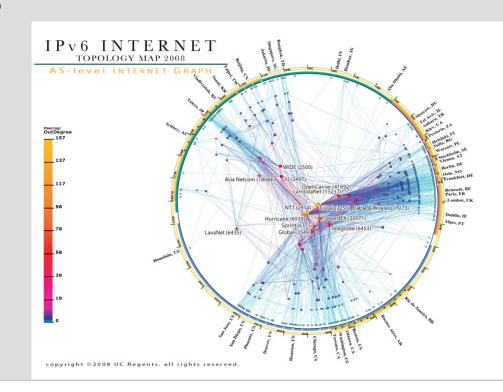
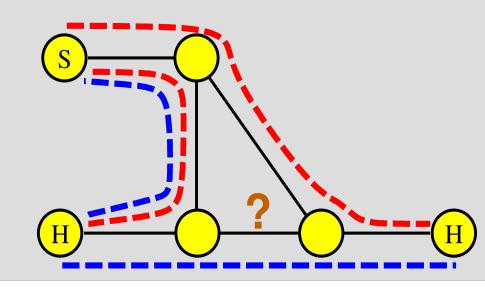

DAR Active measurement in the large

Tony McGregor


RIPE NCC Visiting
Researcher
tony.mcgregor@ripe.net

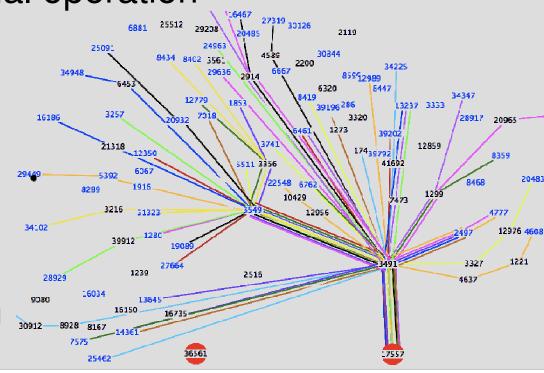
The University of Waikato tonym@cs.waikato.ac.nz


Challenges in Active Measurement Topology

- Can measure topology from a small (~100s) number of sources to many destinations
 - e.g. ARC/scamper (CAIDA)
 - PlannetLab
- Probe perspective bias
 - Academic
 - Well connected
- Selected destinations
 - May not be active
- Asymmetry
 - Peer to peer
- Cycle time
- NATs

Challenges in Active Measurement Routing Failures

- Can discover many failures as seen from available perspectives
 - Hubble
- Missed Failures
- Masked failures
 - A failure close to a monitor masks others
- Accurate location
 - Direction of failure
 - Limits of spoofing
 - Extent of failure
 - Path asymmetry



Challenges in Active Measurement Summary

- Limited perspectives
 - Roughly in the order of
 - 0.001% of end-hosts
 - 0.2% of Autonomous Systems
 - Won't have a probe that sees many events
 - Asymmetry
- Probing to third party destinations
 - Responsiveness
 - Timely response
 - Any response
 - Loading
- NAT

Example ApplicationIs my network globally reachable?

- Notification service for reachability events like the YouTube hijack
 - Or smaller event affecting just one network
- Current data (e.g. RIS) useful after the event
 - Path changes are normal operation
 - Need real time reachability
 - Hubble like
 - wider range of vantage points
 - Non-academic
 - Leaf-nodes
 - More
 - Possibly combined with BGP data

Other Applications

- Is there a routing hole in my network
 - between particular source/destination pairs
- Bidirectional topology
 - How asymmetric is the Internet?
 - What is the path from X to me?
 - For testing of new protocols and applications
 - simulation
- Overlay network routing
- What is the performance to my network?
 - on average
 - from a particular network?

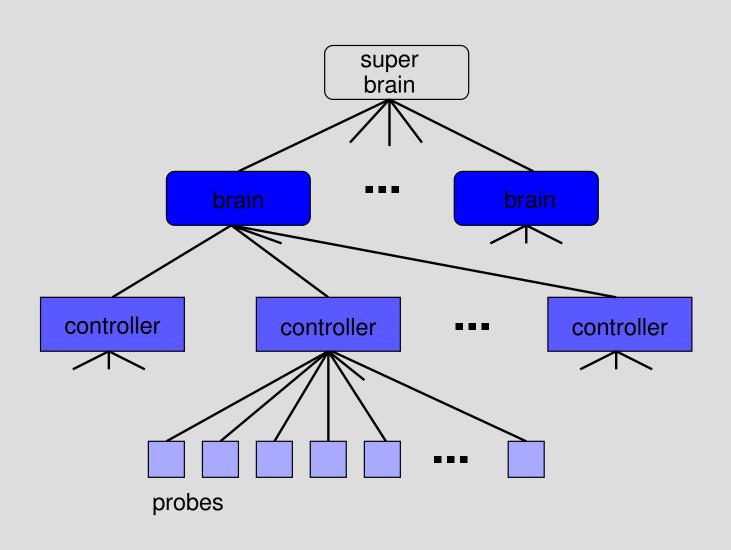

DAR

Diverse Aspect Resource

- Can we design, build, maintain and make good use of an active measurement system with in the order of 100.000 active probes?
- What might it look like?
- What are the key challenges?

Hardware Probes

- Hardware must be cheap and robust
- Token or single board computer
- Specs in the ballpark of:
 - 300MHz processor
 - 64MB Flash
 - 64MB SDRAM
 - 10/100 Mbit/s Ethernet
- Heterogeneous deployment



Software Probes

- DAR should also support software only probes.
 - Package downloaded and run on a host
- More volatile than hardware probes
- Different performance characteristics


Hierarchy

Architecture

- Still very fluid
- Presented here to give overall impression
- Numbers are possibilities

Overview of an Architecture

Probe

- Token
- Performs low level measurements
 - ping, traceroute, send packet
- On boot registers with a controller
 - Finds suitable controller via registration server
- Software remotely upgradeable
- Resources will be limited
 - Hardware
 - User limits
- Low reliability
 - The set of available probes is always in flux
- In the order of 100,000 probes

Controller

- Manages a set of probes
- Keeps track of what probes are available
- Can answer questions about what resources each probe has
 - Location (ip, as)
 - Bandwidth available
 - Memory for result storage
- Accepts work requests from brain
- Aggregates results

Controller

- Medium reliability
 - Shouldn't go down but system must continue operation if one or more controllers have failed
- Up to 1000 controllers with up to 1000 probes each

Brain

- Manages a set of controllers
- "Implements" a measurement application
 - May involve many low level tests
- Knows or can discover what resources each controller has.
 - Allocates work to controllers
- Very reliable. Measurement fails if a brain fails.
- 1 16 brains each controlling up to 256 controllers

Super brain

- Not clear that there will be a super brain
- If there is
 - Overall supervision of brains
 - Allocation of work between brains
 - Maintaining state of brains
 - Location of resources that only some brains may support
- Only ever a single super brain
- Hardened against failure
 - If the super brain fails brains continue to operate but new measurements may not be possible

Presentation Service

- Interface with users
 - Presents data (e.g. via web)
 - Accepts requests for new work from users
- Store data
- May be multiple servers cooperating to provide enough resources and stability.
 - Standard approaches
- High availability but data collection should continue (for a while) if service fails
- 1 − 10 servers

Registration Service

- Contacted by probes and controllers when the boot
 - Exists at well know location (DNS and/or IP)
- Very simple service
 - Highly reliable and can handle many requests
- Very stable
 - Replicated for reliability
- 1 5 identical instances, up to 100,000 probes per instance

Major Challenge

- It is not obvious how to design measurements from a very large number of probes
 - Probably can't do full mesh measurements
 - 100,000 pings + 100,000 replies + 100,000 other nodes pinging + replies = full capacity of 256Kb link for ~10 min. => long cycle time
 - Even investigating a routing failure to a single destination a traceroute from every source to target creates a hot spot at the target
- Optimised measurement techniques needed
 - e.g. doubletree for traceroute
 - Optimised ping?
- Focus of current work

Other Questions

- What principles should guide the choice of which controllers to associate a probes with.
 - Function
 - Location
- Similarly for controller/bring and brain/super brain association
- How generic should we be
 - More generic more likely to meet future needs
 - Less efficient
 - More complex

Other Questions

- How to encourage users to deploy probes
 - Hardware or software
- How to respond to a failed probe
 - Automated
- "Abuse" notifications
- And lots more!

Conclusion

Thoughts and comments are very welcome

sg@ripe.net