ENUM - Experiences

Lawrence Conroy

<lawrence.tel>
Specifications/Acronyms

- RFC 3401 – DDDS overview
- RFC 3402 – Core algorithm
- RFC 3403 – DNS database & Rules (plus some didactic use examples)
- RFC 3404 – Specification of a general URI generation Service
- RFC 3405 – URN registration process
- RFC 2915 – Pre-DDDS NAPTR spec
- RFC 2916 – Pre-DNS ENUM spec
- RFC 3761 – ENUM specification
- RFC 5483 – ENUM Experiences
 - RFC 3761bis – draft – update to 3761
 - Service-guide – draft – definition of process for Enumservice registration
- DDNS = Dynamic Delegation Discovery System
- AUS = (DDDS) Application Unique String
- ERE = (posix) Extended Regular Expression
- URI = Universal Resource Identifiers (rfc3986) ~≈~ URL + URN
- IRI = Internationalised Resource Identifiers (rfc 3987)
- ADH = Alphabetic, Digit, or Hyphen
- NTN = Non-Terminal NAPTR
- NANP = North American Number Plan
ENUM is...

• A mapping from phone number to different ways of interacting with a user/endpoint

In rfc2916, this was:

• phone-number -> **URI**
 – *This was usually a SIP URI. Not everyone thinks that SIP is the way to connect - SIP providers certainly don’t as they block SIP invites from unauthenticated callers so...*

In rfc3761, this is:

• phone-number -> **Enumservice + URI**
 – *Enumservice is the kind of session that results from use of this URI, and the kind of application that’s needed for this session*
ENUM is... 2

- ENUM is a DDDS application (3401–3403+/- ½)
- Database/Rule Type: DNS, and NAPTR (3403)
- AUS: Phone number in international format, stripped of all non-digits except initial ‘+’
- Initial Key Generation/First Well Known Rule:
 - Strip all non-digits
 - Reverse character sequence
 - Intersperse .
 - Append .e164.arpa. domain apex
- Sounds simple – what could possibly go wrong?
ENUM is... 3 - Policy Committees

• Agreed with IAB & ITU-T (a UN organisation)
• ITU-T: each country chooses its own rules
• Name eligibility rules differ
 – Who owns a phone number differs
 – Who can register an ENUM domain differs
 – How they prove eligibility differs
 – What the owner can do with domain differs

“Governance” intrudes
Field Contents: General

- ORDER and PRIO are unsigned integer fields
- Flags, Services & Regexp fields are DNS strings
- Replacement is (uncompressed) FQDN
- Strings interpreted as UTF-8, but...
 - flags & services are case-insensitive printable US-ASCII
 - Regexp ERE shouldn’t need non-ASCII (+digits)
 - Domain owner could put in non-ASCII (e.g. into alternate match strings) but that would be stupid – thus expect someone to do this
 - Static text in Repl sub-field should be ASCII (URI)
 - If extended for IRIs, these would need to be pre-processed (URL-escaped)
Sort ordering

• ORDER is most significant; PRIO is least significant (not the other way around)
• Best value is lowest (not highest)
• Specifications are complex:
 – Are NAPTRs with worse ORDER values ignored?
 – Clients will use other fields for evaluation
 – Is PRIO part of the sort or not?
 – Everything is optional, but clients do process it along with ORDER
 – Do clients consider ORDER/PRIO across domains?
Sort ordering

• Clients have been known to:
 – Ignore ORDER/PRIOR entirely, just dealing with the records “as they come”
 – Only take the first record in the RRSet as delivered, ignoring any others
 – Fail, or ignore some or all NAPTRs if they receive a non-terminal NAPTR (usually “lower” ones)
 – Ignore all but NAPTRs with the “winning” ORDER
Flags/Services

• ENUM has one flag: “u” (3404)
 • Service field syntax is:
 E2U 1*(+ ((type) 0*(: (subtype))))
 where type and subtype are each up to 32 ADH

• All DDDS applications inherit “” (3403/4)
 – If flag field is empty, it’s a non-terminal rule

• Notes:
 – To avoid collision with 2915/6, E2U is on left – in 2915, it’s on right
 – There can be more than one Enumservice; same URI, different actions
 – Service field syntax only works for terminal rules; it’s empty in NTNs
Flags/Services

- Clients have been known to:
 - Assume service field is always populated and fail or reject NTNs (sometimes abandoning the query)
 - Fail or misinterpret service fields with more than one Enumservice
 - Reject a NAPTR if they didn’t understand or want to use *any* Enumservice in it
 - Process multiple Enumservices in left-to-right or right-to-left order (e.g. `voice:tel+sms:tel+fax:tel`)
 - Try to scan services field looking for URI schemes
Regexp: ERE and REPL

- DDDS Regexp field (3402 and 3403) generates rule output \textit{(and possibly non-terminal keys)}
- NAPTR Regexp field syntax is:
 \texttt{<delim>ERE<delim>Repl<delim><iflag>}
- Notes:
 - URI output is constructed from Repl field; difficult to find a delimiter character that is \textbf{not} valid in URIs, and \textbf{not} significant in EREs
 - The ENUM AUS has a character (‘+’) that is ERE significant so needs to be “escaped” in the ERE sub-field if present
 - The \texttt{iflag} has no effect at all so is pointless to add to ENUM NAPTRs
 - This is UTF-8 in a DNS string; may include any character including \texttt{NUL}
Regexp: ERE and REPL

• Clients have been known to:
 - not match the AUS (i.e., expect ERE == ^.*$ or .*)
 - Expect the URI to be static text (i.e., no replacement with sub-expressions)
 - Assume the Delimiter is '!' -- they search the string for '!' as the internal delimiter between the sub-fields
 - Do not deal with REGEXP escaped characters -- they just look for delim character alone
 - Expect the closing delimiter to be the last character in the string
 - ignore everything in NAPTR and look only at the URI
Regexp vs Replacement

• In DDDS, only one is used in any NAPTR:
 – For ENUM output (URI), the only possible field is Regexp
 – For non-terminal output (FQDN), either might be used
 ...but...
 In practice, only the Replacement field is feasible to use

• Generalised number-dependent generation of ENUM domains using ERE is impractical/very very hard:
 – Digits in AUS are reversed relative to ENUM FQDN
 – It’s easy for NANP numbers, but elsewhere (e.g. in DE, AT, CH) numbers have different lengths, even with common “root” digit patterns
 – Regexp can be a maximum of 255 bytes, so ERE is limited
 – Reasonable maximum length for DNS response limits number of NAPTRs